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UNIFORM INTERIOR ERROR ESTIMATES 
FOR THE REISSNER-MINDLIN PLATE MODEL 

LUCIA GASTALDI 

ABSTRACT. Interior error estimates are derived for the solution of the Reissner- 
Mindlin plate model discretized by mixed-interpolated elements. Precisely, it 
is shown that the error in an interior domain can be estimated by the sum of 
two terms: the first has the best order of accuracy that is possible locally for the 
finite element spaces used, the second is a weak norm of the error on a slightly 
larger domain (this term measures the effects from outside of this domain). 
The analysis is based on some abstract properties enjoyed by the finite element 
spaces considered. 

1. INTRODUCTION 

The Reissner-Mindlin model describes the deformation of a clamped plate 
of moderate thickness subject to a transverse loading. The plate occupies, in the 
undeformed configuration, a region Q x (-t, t) , where Q is a regular, bounded 
domain in R2 and t > 0 is the thickness of the plate. Given a vertical load 
F. the problem consists in determining the rotation 0 of the fibers normal to 
Q2 and the transverse displacement w, as the minimizers in [HI(Q)]2 x Ho(Q) 
of the following functional: 

( 1.1 ) JJt(O w) = - Pa(O, 0) + A 11 O - grad w i12 - t3(F. w), 

where (t3/2)a(0, 0) is the bending energy, At 0 - gradwjj is the shear energy, 
and 11 * 1lb and (., *) represent respectively the norm and the inner product in 
L2(Q). Here, A = Ek with E the Young modulus, v the Poisson ratio, and 2(1+v)I 
k the shear correction factor. Moreover, note that the load has been scaled so 
that the solution tends to a nonzero limit as t tends to zero. See for instance 
[3] for more details. 

We consider the finite element approximation of the Reissner-Mindlin plate 
proposed recently in [6]. The discretized problem is described by: find oh E Oh 
and Wh E Wh, which minimize the following functional: 

(1.2) Jth(Oh, Wh) = !2a(Oh, Oh) + 2 1R~h- gradWh wj- t3(F, Wh). 
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Here, oh and Wh are finite element subspaces of [HI(Q)]2 and HI(Q), re- 
spectively, and R is a linear bounded operator which takes values in a third 
finite element space rh and satisfies RgradWh = gradWh VWh E WK. Notice 
that in the shear energy we used IIROh - gradWh II instead of II Oh - gradWh I 
in order to avoid the numerical locking phenomenon. 

This finite element discretization is characterized by the choice of the finite 
element spaces oh, Wh, rh, and by the choice of the linear operator R. In [6] 
a whole family is constructed combining known results on the approximation 
of Stokes problems with known results on the approximation of linear elliptic 
problems. This idea points to some properties which are such that if an approx- 
imation satisfies them, then the discrete solution converges to the continuous 
solution uniformly in t. Moreover, in [8] and [9], the following optimal error 
estimates were proved: 

110 - OhIII + IIw - WhIIl < chS(IIOI1s+l + IIwIIs+I), 

with C a suitable constant, independent of h and t. 
Unfortunately, these estimates are not uniform with respect to t, unless 

s < 3/2. In fact, Arnold and Falk have investigated in [1] and [2] the structure 
of the solution of the Reissner-Mindlin plate equations in its dependence on 
the plate thickness, showing the existence of a boundary layer for t small and 
a uniform bound for 110115/2 but not for more regular spaces. 

This leads us to think that it is not useful to introduce finite element spaces 
with improved properties of approximation, because such boundary layers limit 
their accuracy anyhow. But, numerical experiments have shown good accuracy 
away from the boundary and, on the other hand, the boundary layer does not 
limit the regularity of the solution at a positive distance from AQ nor does it 
affect the smoothness of its restriction to AQ. 

Therefore, our aim is to obtain interior estimates which are uniform with 
respect to t, so that they can take advantage of the richness of the finite element 
spaces. 

Using the technique suggested by Nitsche and Schatz (see [14]) of localizing 
the problem by means of some cutoff functions, we prove that the error in a 
compact subset of Q can be estimated by the sum of two terms: the first has 
the best order of accuracy that is possible locally for the subspaces used, the 
second is a weak norm of the error on a slightly larger domain which measures 
the effects from outside of the compact subset in consideration. The analysis 
will be carried out using essentially the abstract properties of the finite element 
spaces, combined with some local approximability assumptions concerning the 
subspaces containing the functions with compact support in Q. 

2. NOTATIONS 

We list here the basic notations used in the paper. 
Let A be a bounded open set in R2. For s > 0 any real number, Hs(A) 

and Hs (A) will denote the usual L2-based Sobolev spaces (HO(A) = L2(A)) 
and 11 IIs A will stand for their norms. When no confusion may arise we drop 
the subscript A. 

For s < 0 any real number, Hs(A) will denote the dual space of Ho-s(A) 
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endowed with the norm 

(2.1) IIUI1sA= su (ul v) 
VEH-j (A) IIVIK-s,A 

v#tO 

where (, .) represents the duality pairing between Hs(A) and H-s(A). We 
set 

H(rot; A) = {6 E [L2(A)]2, rot6 EL2(A) 

endowed with the graph norm 

116112rotA = 11 
2 hg + 11 rot 6112 

In addition, let T be the unit vector tangential to aA and oriented counter- 
clockwise; then 

Ho(rot; A) = {6 E H(rot; A): 6. T = 0 on oA}. 

The dual space of Ho(rot; A) is denoted by r and has the following charac- 
terization: 

r = (Ho(rot; A))' = {X E [H-1(A)]2; divX E H-'(A)I, 

with the graph norm 

IIxI12 = IIXI121 + 11 divX11I2 
Let s E R; then for a triple (i, 6, q) with t E [Hs(A)]2, 6 E H(rot; A) n 

[Hs- (A)]2, and q E Hs- (A) we introduce the following notation 

(2.2) III('i 6, q)1112 = II'1I2LA +A71t2II6II1lA + I2qIIs-lA 

We use a circle above a function space to denote the subspace of elements with 
support contained in A cc Q. A circumflex above a function space denotes the 
subspace of elements with mean value zero. Vector-valued functions, operators, 
and spaces will be written in boldface. 

Let Go and G, with Go cc G cc Q be arbitrary but fixed concentric 
sphere; then we make the following definition. 

Definition 2.1. Let 5Ph be a linear operator defined on a Hilbert space V with 
values in a finite-dimensional subspace Vh of V. We say that 95h is local if 
there exists an ho < 1, depending in general on Go and G, such that for all 
he (O, ho) andforevery ue V 

(2.3) suppu C Go = supp5h u C G. 

where Go and G stand for the closure of Go and G, respectively. Moreover, 
there exists a constant depending on Go, G such that 

(2.4) 11-ah011V, Go < CIIUIIV, Go 

The letter C denotes constants which are not necessarily the same in any two 
occurrences. The notation C(ai, ..., an) means that the constant C depends 
on the n known parameters a1, ..., an. 
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Finally, we recall the following standard differential operators for any scalar 
function r and any vector-valued function u: 

(Or\( /r\ 

gradr= 
'Or'' rotr- (Oy 

divu= 
O 

+ D', rotu-= Dx Du, 

3. FORMULATION OF THE CONTINUOUS AND DISCRETE PROBLEMS 

Let us introduce the Euler equations for Jt. The minimizers of (1.1) are 
then solutions of the following variational problem: 

Problem 3.1. Find (0, w) E [H (Q)]2 x HI(Q) such that 

(3.1) a(O,ii)+(y,gradv-i,)=(Fv) V(q,v)E[H'(Q)]2xH ((Q), 
(3.2) y = At-2(gradw - 0), 

where the auxiliary variable is the shear strain. 

For every 0 and q belonging to [HI(Q)]2 the bilinear form a has the 
following expression: 

(3.3) 
E a0I 

+ aO2~~ +11' +0 a 
I 

12(1 - V2) I x Dy Ax Dx ay ay 
+ 2 (Dy +DO) (D-li + Di2)] dxdy 

Then Kom's inequality 

(3.4) a(t7, a) > KljqjjI for every tiE[H'()]2 

and the theory of [3] give the existence and uniqueness of the solution and the 
following a priori estimate: 

(3.5) 1lOll1 + IIWii + IIyIIr + tilyllo < CIIFI[-1. 
In our analysis, we shall also make use of an equivalent formulation of (3.1) 

and (3.2), suggested by Brezzi and Fortin [7]. By applying the Helmholtz theo- 
rem, we decompose the shear strain vector in the following way: 

(3.6) y = grad V + rotp 

with qi E Ho(Q) and p E H1 (Q); then the following variational formulation 
for Problem 3.1 can be derived: 

Problem 3.2. Find qi E HIo9(Q), (0, p) E [HI(Q)]2 x H1 (Q), and W E Ho(Q) 
such that 

(3.7) (grad y, grad () = (F, (0) V( E Ho(Q), 
(3.8) a(O, t,) - (p, rot t) = (grad M/, t,) Vt7 E [Ho()]2, 

(3.9) (O,rotq)+ A-lt2(rotp, rotq) =0 VqEH'(n), 

(3.10) (grad w, grad v) = (0, grad v) + A-1 t2 (F, v) Vv E Ho(Q). 
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Notice that this system of equations decouples in a natural way into a Poisson 
problem, a perturbation of a Stokes-like problem, and another Poisson problem. 
Hence, the analysis can be carried out sequentially. With the help of this for- 
mulation, the following a priori estimate can be derived uniformly with respect 
to t (see for example [7]): 

(3.11) 110112 + 11w112 + 11/12 + IIPI1I +A-112tllp112 < ClIFllo. 
When the regularity of F increases, the solutions of the two Poisson equations 
become smoother, while the Hs-norm of the solution of the Stokes-like problem 
is not uniformly bounded with respect to t for any s . In [1], Arnold and Falk 
analyzed the structure of the boundary layer and proved the following best a 
priori estimate for F E HI (Q): 

(3.12) 110115/2 + 11PI13/2 + A-)12tllpI5/2 < C. 

On the other hand, at a positive distance from AQ the boundary layer does 
not limit the regularity of 0 and p. Thus, for Q0 cc Qi cc Q the following 
interior bound holds: 
(3.13) 
11011s+24Qo + IIWIIs+24?o + IIIIs+24?o + IIPIIs+In + A- 112tlplls+2,n, < CIIFjIjsn. 

We describe now the finite element approximation of (3.1), (3.2) that we 
shall consider (see [6]). 

We assume henceforth that the domain Q is decomposed by a regular and 
quasi-uniform mesh 9h. As usual, we denote by h the diameter of the largest 
element. 

Let oh, Wh, and Fh be finite element subspaces of [H (Q)]2, H (Q), and 
HO(rot; Q), respectively, and let R be a linear operator with values in Fh, 
related by the following conditions: 

(3.14) Reh C Fh, 
(3.15) grad Wh c Fh, 
(3.16) (R-I) (grad Wh) = {O}. 

Assume furthermore that there exists another finite element space Qh such that 

(3.17) rotFh C Qh, 

(3.18) the pair (Oh, Qh) is good for the Stokes problem, 

(3.19) rot Rt = P0 rot t, for every t E [H'(Q)]2 

with P0: L2(Q) ` Qh denoting the L2-projection, 

(3.20) if 6h E Fh is such that rot6h = 0, then 6h E grad Wh. 

Some comments are in order about these conditions. Condition (3.18) means, 
more precisely, that there exists a linear operator H: [HI(Q)]2 1 ) eOh such that 
for every t E [HI(Q)]2 

(3.21) (rot(,,-JMtI), q) = 0 Vq E Qh, 

(3.22) Ifl'lrIq ? C< QW1i. 
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The condition (3.19) is nothing but the commuting diagram property for elliptic 
problems. As a consequence of it, for every 6 E [HI(Q)]2 one has 

(3.23) IIR6Irot < CII6I1rot. 
Notice that the same space Qh is used to approximate both the pressure in the 
Stokes problem and the scalar field in the elliptic problem. Hence, it is prefer- 
able to consider elements for the Stokes problem with discontinuous pressure. 
Examples of spaces satisfying (3.14)-(3.20) are reported at the end of this sec- 
tion (we refer also to [6]). 

The Euler equations of (1.2) can be written as follows: 

Problem 3.3. Find (Oh, Wh) E oh x Wh such that 

(3.24) a(Oh, t) + (Yh, gradv-Rt) = (F, v) V(t, V) E oh X Wh, 

(3.25) Yh = it-2 (grad Wh - ROh)O 

In view of the properties listed above for the finite element spaces, we can 
introduce a decomposition principle similar to (3.6): 

(3.26) Yh =grad/h +Ch 

with V'h E Wh and (ah, Ph) E Fh X Qh such that 

(3.27) (ah, 6) = (Ph, rot6) V6 Fh. 

We observe that (3.27) means that ah = "rot h"Ph for an appropriate discretiza- 
tion of rot. 

Then Problem 3.3 is equivalent to the following set of equations (see for 
example [8]): 

Problem 3.4. Find V/h E Wh, oh E eh, Ph E Qh, ah E Fh, and Wh E Wh such 
that 

(3.28) (grad yh, grad A) = (F, (0) V(o E Wh, 

(3.29) a(Oh, 1) -(Ph, rotel) = (grad yh, Ret) V, E oh, 

(3.30) (rot Oh, q) + I1t2(rotah, q) = 0 Vq E Qh, 

(3.31) (ah, 6)-(Ph, rot6) = 0 V6 E Fh, 
(3.32) (grad Wh, grad v) = (ROh, grad v) + A- I t2 (F, v) Vv E Wh. 

As in the continuous case, this set of equations can be solved sequentially. 
First one gets V/h as a conforming approximation of the solution of an elliptic 
problem. Then (Oh, Ph, ah) can be calculated by (3.29)-(3.31). Notice that 
(3.29), (3.30) is, for t = 0, a Stokes-like problem discretized using the pair 
(Oh, Qh) . On the other hand, for t $ 0, (3.30), (3.31) is a mixed discretization, 
by means of the pair (Fh, Qh), of a Neumann problem, with datum rot oh. At 
the end, (3.32) is again the discretization of an elliptic problem by conforming 
elements. 

In order to get the interior estimates, we shall analyze this system; hence it 
is better to write here the continuous problem corresponding to Problem 3.4. 
For this we introduce in Problem 3.2 the mixed formulation of (3.9), setting 
a = rotp. Then we have 
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Problem 3.5. Find V E Ho(Q), 0 E [H (Q)]2, p 2(Q), a E Ho(rot; Q), 
and w E HIj(n) such that 

(3.33) (grad A, grade() = (F, (0) Vp E WA 
(3.34) a(0, 1) - (p, rot q) = (grad Cr, q) Vq E [Ho(Q)]2, 

(3.35) (rot@, q)+)-1t2(rota, q)=0 Vq EL2(Q), 

(3.36) (a ,8 ) - (p ,rot 6) = 0 V6 E Ho(rot; Q), 
(3.37) (gradw, gradv) = (0, gradv)+A-i1t2(F, v) Vv EHo(Q). 

3.1. Examples of finite element spaces. We present now some families of 
Reissner-Mindlin elements which satisfy the properties (3.14)-(3.20) (see [6] 
and [8]). 

For the sake of simplicity we assume that Q is a polygon. This does not 
imply a loss of generality. 

We denote by 5k the set of the polynomials of degree < k. 

Triangular family. Let Q be decomposed into triangles T and for any integer 
k > 2 define 

(3.38) Wh = {V E H'(K2)1 VIT E Yk(T), T E 9h, 

(3.39) oh = PI E [Ho(Q)]2 jqT E [Sk(T)]2, T E Ah;} 
with 

Sk T) 5k (T) fork>44 
IV E Yk+ (T)l vle E k(e) on each edge e of T} for k = 2, 3; 

then 

(3.40) 'h = {6 E HO(rot; Q)j 61T e [Yk1(T)]2 ED (X, y)'L5k_(T), T e Th}- 

'h is a kind of "rotated Raviart-Thomas" space, and it satisfies the commuting 
diagram property (3.19) for 

(3.41) Qh={qE L 2()l q|T Ek1(T), TeSa} 

with the reduction operator R defined locally by the following degrees of free- 
dom: for v smooth in T, Riq satisfies 

f(Ri - i) * TPk- l (s) ds = 0 Ve edge of T , Vpkl e k4 I(e), 
(3.42) e 

J(Re - #)Pk-2 dx dy = 0 VPk-2 E [k-2(T)]2. 

We recall that these choices for the pair (Oh , Qh) correspond to well-known 
stable elements for the Stokes problem. We refer to [8] and the references 
quoted therein for the construction of the operator flI satisfying (3.21)-(3.22). 

Other triangular families can be obtained for k = 2, 3, substituting in rh 
the Raviart-Thomas space with the Brezzi-Douglas-Fortin-Marini one and con- 
sequently 5k by Sk in Wh. 
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Rectangular family. Let Q be decomposed into rectangles R, and for k = 2, 3 
define 

(3.43) Wh = {v E H'(Q)I VIR E Qk nk+l, R E gh}, 

(3.44) = {tI E [HI(Q)]21 'hR E [Qk]2, R E S}, 

(3.45) r= {6 E HO(rot; K)I6 JR E BDFMk, Re g.}. 

Fh is now a kind of "rotated Brezzi-Douglas-Fortin-Marini" space defined by 

BDFMk = {6151 E ok\ {X}, 32 E k\Iyk11} 

It is known that Fh satisfies the commuting diagram property (3.19) for 

(3.46) Qh = {q E L2(Q)I qIR E ok1(R), R E Sh} 

with the reduction operator R defined locally by the following degrees of free- 
dom: for t smooth in R, Ret satisfies 

I(R 1 -?)zTpkIl(s)ds=0 VeedgeofR, VPk1 eYk-(e), 
(3.47) 

J(Ra -)Pk-2 dx dy = 0 VPk-2 E[Yk-2(R)]2 

We refer to [6] for the proof that these spaces satisfy the properties listed 
above; we only mention that these choices for (eh, Qh), for k = 2, 3, are 
stable for the Stokes problem (see for example [8]). 

We end this subsection by stating the approximation properties of the finite 
element spaces presented: 

(3.48) '1'2 IIi ? ChsIIlhIls 
V,,E[Hs(Q)nH0(Q)]2,1 =0,1, l<s<k+1, 

(3.49) 116 - R6I1o + hII rot(6 - R6)I1o < ChsII16Is 

V6 E [Hs(Q)]2 n Ho(rot; Q), 1 < s < k, 

(3.50) 11v - Povllo < ChsIIvIIs Vv E Hs(Q), 0 < s < k, 

(3.51) liv - Piv iiJ < Chs-/IIvIIs 

vV 
E 

Hs(Q) 
n Ho(Q), = 1, 0 < s < k + 1. 

Here, P1 is an interpolation operator constructed locally via a local averaging 
process such as that in [8] or [16]. Such an operator is often employed to 
construct II locally (see Proposition 2.9 of [8] and the examples quoted in 
Chapter VI). The operator P1 in [16] turns out to be more convenient in the 
present setting because it preserves boundary conditions and is a projection 
operator, i.e., P1 v = v for all v E 5k . 

From the previous approximation properties the following error estimates 
can be derived (see [8] and [9]): 

110 - 0hI11 + 11W - WhIIl + 11V - V/h1Il + lIP -PhI10 + A'tlla - &h110 
< Chs(II0IIs+1 + IIWIIs+1 + IIVIIs+1 + iiPiis +7-112tIIpIIs+I), 

with s < min(k, 3/2). 



ERROR ESTIMATES FOR THE REISSNER-MINDLIN PLATE MODEL 547 

4. LOCAL ABSTRACT ASSUMPTIONS AND PRELIMINARIES 

Let Q, be a regular bounded subset of Q. We denote by Oh (Q1) the finite- 
dimensional subspace of [H1 (Q1)]2 built up by the same piecewise polynomial 
functions as eh (clearly without boundary constraints on OQI). For Qoc Qi 
we define 

Oh(P) = {I E Oh(n 1)ISUPP C o} 
0 0 

Analogous meaning will have the notations WhJ(Vh(l), Wh (Q0), 1h (D), h (Qo) 
0 

and Qh(Q1), Qh(o0). 
We make the following local approximability assumptions concerning 

Oh(Q1), Wh(fll),Fh(Ql), and Qh(fl). Let Go and G, with Go cc G cc 
Q1, be arbitrary but fixed concentric spheres. We shall denote by Gh a union 
of elements of Th which contains Go and is contained in G. 

There exists an ho < 1, depending in general on Go and G, such that for 
all h E (0, ho) there holds: 

Al. The linear operators nI, R, Po, and P1 are local (see Definition 2.1) 
and 

11 - 1|Iilll,G < Chs'I711s,GO 
(4.1) 0 

V7 E [Hs(Go)]2, 1=0, 1, l<s<k+l, 

116 - R lo, G + h || rot( - R) llo, G < Chs litJs,Go 
(4.2) 0 

) V E [Hs(Go)2, < s < k 

(4.3) IvI-POVIIOG < Chsllvlls,GO Vv E Hs(Go), O< s <k 

IjV - PIVV|,G < ChslIlvIls,Go 
(4.4) 0 

VvEHS(Go), 1=0,1, O<s<k+l. 

Remark 4.1. In particular, if a) E CO(Go) and q E [Hs(G)]2, then w0q7 E 
0 0 

[Hs(Go)]2, and we can apply Al relative to 171, so that fl(oq) E Oh(G) and 
from (4.1) 

11W?, - fI(W1)IIl,G < Chs-lIlqlls,Go, / = 0, 1, 1 <S <k + 1. 

Analogous remarks hold for the operators R, Po, and PI . 
A2. Let w E C' (Go); then there exists Gh such that Go cc Gh cc G and 

(4* ) ||Cl)8-Il((Oh )l||l, G < Ch llth ll l,Gh VhEo Ql) 

(4.6) 11 (6h - R(0h) Illo, G < Ch 11 6h I I , G, Vtdh E rh (Ql ), 

(4.7) I|j|qh - PO(wq)qh)|0,G < ChIIqhjjo, G Vqh E Qh(Q1), 

(4.8) lw vh-Pl(wVh)lll,G < Ch 2' IIVhl,Gh VVh E Wh(9l), / = 0, 1. 

A3. Let Gh be as in A2; then for all 6h E Fh (1) there holds 

(4.9) || rot(wAh) - rot R()h&) |lo, G < Ch II|h 61o, Gh + Ch 11 rot 6h llo, Gh. 
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The Mindlin-Reissner elements introduced in the previous section enjoy the 
local approximability assumptions A1-A3: 

It is easy to see that Al holds, since the operators I', R, Po, and PI are 
defined locally, possibly through a local averaging process (see [16]). A2 is more 
delicate, and we refer to [11] for the technical details of its proof in the case 
of the triangular family with k = 2. For the proof of A2 with other choices of 
spaces see also [4], [10], and [12], [15] in an analogous context. 

We now verify A3 for the triangular family with k = 2; the proof is similar 
for k > 2. The assumption (3.19) in conjunction with Remark 4.1 implies the 
following bound: 

(4.10) 1l rot (w6h) -rotR(w6h)I|O.G < Ch (z Ilrot(w6h)IllT) 1/2 

where the sum is taken over those triangles of Sh whose union Gh contains 
the support of co. It remains to evaluate the L2-norm of the second derivatives 
of rot(Wcdh). Recalling that rot(w06h) = rot w . 6h + w rot 6h we get from the 
Leibniz rule 

2 

|| rot(w6,*)II2 ? < CZ(|Di(rotwo)D>j'hIIoT + IID'(w)D2 (rotth)0,o T)- 
j=O 

Then, since co E CO (Go) and rot 6hIT E P1 , we obtain by the inverse inequality 

(4.11) Il rot(w4)II2 T < Ch 2(jjtshI T + I rot 6hIo T) + CIID2h6IIhT. 

To bound the last term, we recall that the elements of Fh have on each triangle 
the following representation: 

351h =a, +bix+cly+y(dx+ey), 

32h = a2 + b2x + c2y - x(dx + ey), 

so that the derivatives 0231h/0X2, 0252h/0y2, 20201h/Oxay + 0232h/0X2, 

0261h/0Y2 + 20252h/DX ay all vanish. This implies that we can write each 
second derivative of the components of 6h in terms of a first derivative of 
rot 6h, so that we have the following estimate: 

IID2 6hIo,T < CGlD rot6hll0,T < Ch 'I rot6hIO, T, 

which inserted in (4.1 1) and back in (4.10) gives (4.9). 

Remark 4.2. The assumption A3 does not hold for rectangular families. In fact, 
suppose that the sphere Go contains strictly the rectangle R = (-h, h) x (O, h), 
divided into two elements. Next take 

6h = I2 (y(y - h) signx, (2y - h)(x signx - h)) 

in R and 6h = (0, 0) otherwise. Moreover, let W E CO(Go) be such that 
w(x, y) = x for (x, y) E R and calculate rotR(wsh). Then it is easy to see 
that || rot(w6h) - rot R(w06h) llO, R = O(h), h lkh || O.R = 0(h2), and rot 6h = 0 . 

We now state some technical lemmas, whose easy proofs are based on differ- 
entiation rules and integration by parts (see [11] for the details). 
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Lemma 4.3. Let w E C?(G) and v E [HI(Q)]2, w E [HS+2(G)]2 for some 
s > -1; then 

(4.12) a(wov, w) = a(v, ww) - I(wov, w) 

and 

(4.13) I(wv, w) < C(w), G)||v||_s-1,GI1wIIs+2,G- 
0 

Lemma4.4. Let w E COO (G), r E Hs+l(G), and v E [H (Q)]2 for some s > -1; 
then 

(rot(wv), r) = (wr, rotv) - ((rotw)r, v) 

with 

((rota)r, v) < C(a, G)jjvjj-slGjjrjjs+lG- 

Lemma 4.5. Let wO E C' (G); then for every q E Qh , I E Oh, 6 e Fh' the 
following equalities hold: 

(4.14) (q, rotfl-(wq)) = (q, -rotw * -) + (woq - Po(wq), rot q) 
+ (Po(wq), rot t,), 

(4.15) (q, rotR(wJ)) = (q, -rot w. * 6) + (Po(coq), rot ). 

5. AN AUXILIARY PROBLEM 

Consider the following auxiliary problem: find (z, r) with fn r 0 that 
satisfy 

(5.1) Az-rotr=f inQ, 
(5.2) -rotz+ A-t2Ar=g+A-'t2rot innQ, 

(5.3) z=0, - =0 on0 2, 
On 

where A is the second-order operator associated with the bilinear form a, that 
is, 

(Az, q) = a(z, q) Vz, q E [Ho(Q)]2 

If 4 $ 0, we can introduce the additional variable X which satisfies 

(5.4) X=rotr+4? inQ, XT=O onO92. 

Substituting (5.4) in (5.2), we obtain the system 

(5.5) Az-rotr=f inQ2, 

(5.6) - rot z -A-1t2 rot X=g in Q , 
(5.7) X-rotr=4o inQ, 

(5.8) Z=0 ,r =On T=O on02. 

In the following lemmas we state some a priori estimates for the solutions of 
(5.1)-(5.3) and (5.5)-(5.8). 
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Lemma 5.1. Let f E [H-'(Q)]2 and g E L2(Q), with fQ g = 0, be given and 
suppose that 0 = 0. Then the solution of (5.1)-(5.3) satisfies the following a 
priori estimate uniformly with respect to t: 

(5.9) IIzIIjj + Ijrljj, +A-1j2tjjrjj 1, +71 t2jjrj12,j ? C(jjf11jI,Q + 11gjjo,n). 

If f E [L2(Q)]2 and g E Ho(Q), then 

(5.10) z11I2, a + lirili , a + A-)72t IrII2,Q ? C(I fIoa, + 1IgI 1, Q) 

Lemma 5.2. Let f E [H2(Q)]2, g E H3(n), with fog = 0, and 4 - 0; then 
there exists a positive constant C depending on f, g, Q such that 

(5.11) jIZ115/2,n + jjr113/2,a + A- 1/2tjjr11512,I <? C. 
O o 

Lemma 5.3. Iff E [Hs(Q)]2, g E Hs+l(Q), with fog = 0, and 4)=0, then 
for every open subset QI' such that Q' cc Q, there holds 

(5.12) IIZIIS+2,11 + IjrIIs+I ,Q + -212tI rII5+2,Q. + )-t2IlrII1+3j1' 
< C(QlflIsn + IlgIIs+IQ). 

The results of Lemmas 5.1-5.3 can be deduced from [7], [1] and by means 
of standard techniques for interior a priori estimates (see, for example [13]). 

Lemma 5.4. Let (z, X, r) be the solution of (5.5)-(5.8) with f = g = 0 and 
4) E [HI (Q)]2; then 

(5.13) 1Z112, Q + jfrjl1,a + A-1/2tIlrff2,Q +A-712tIjxjlf,Q < CA-)"2tjI4f,n. 

If 4 E [H2]2, then 

(5.14) jIZ115/2,n + jjr1j3/2,j + )-7/2tjj rl5/2,Q + A-1/2tIjxII3/2, < CA-112t. 

Proof. The inequality (5.13) is a consequence of (5.10) in this case. In fact 
since A is an elliptic operator with constant coefficients, we get from (5.5) 

jIZIj2,0 < CjjAzjjo,Q < CjjrjjI,u < CA-7/2tjj4)jj,Q. 

Then it is easily seen that 

IIXII1EQ < C11011110Q 

The proof of (5.14) is similar. ol 

0 

Lemma 5.5. If f = g = 0 and 4 E [Hs(Q)]2, then for every subset Q' such that 
Q' cc Q, there holds 

(5.15) jIzjjs+i ,,Q + IjrIIs2,1 +A-712tjjrjjs+I ,n +A-7t2jjr11s+2,j2 ? C21t jI4|j51,Q 

and 

(5.16) I ZIII+2,12 +A-7/2tIjxIIs+I Q, < CA-#/2tII?IIs+I,12. 

Proof. The proof is analogous to the previous one. O 
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6. THE MAIN RESULTS 

In this section we describe the main steps to achieve the interior error esti- 
mates, for both the physical variables, the rotation of fibers 0, and the trans- 
verse displacement w. Let no and n, be two open bounded subsets of Q 
such that 0o CC Qi cc Q. Following [14], we are going to show that the 
approximation error in no can be bounded by two terms: the first has the best 
order of accuracy possible in ni , the second is the negative norm II-, of 
the error (js being an arbitrary nonnegative integer). 

We proceed by analyzing the difference between the solutions of Problems 
3.4 and 3.5. We thus split our analysis into three parts: first we consider the 
approximation of the Poisson equation (3.33) by (3.28), then we compare the 
discrete solution of the Stokes-like system (3.29)-(3.31) with the continuous 
solution of (3.34)-(3.36), and we evaluate the error for the Poisson equation 
(3.37) discretized by (3.32). 

6.1. Interior error estimates for the first Poisson equation. We bound the norm 
II V'- V/h II I, no. For the Poisson problem, estimates of such quantities are already 
available. Namely, from [14, Theorem 5.1], we have, if v E HS(Qn), 

(6.1) 1IV - YVhII14n < C(hsIl|/IIs+i,,1 + K"V - hII-j1,n1), 

with 0 < s < k and yu1 a nonnegative integer. 

6.2. Interior error estimates for the Stokes-like problem. We now focus on 
the Stokes-like system. The first step is to prove a local version of the interior 
estimates, considering two concentric spheres Go and G, instead of no and 
Q1. Next we apply such local estimates to a finite number of spheres which 
cover no. Therefore, we start by proving the following local error bound. 

Theorem 6.1. Assume that the assumptions A1-A3 are verified. Let Go cc 
G cc ni be concentric spheres; then we have 
(6.2) 

|( -Oh, a- h, P -Ph)III1,Go 

<C c(II-Vhlll,G + IIw- PI(wy)II11,G 

+ III(C)O - F(wjO), owa - R(owa), wJp - PO(w9P))III1,G 

+111(0- Oh, a-ahP-Ph)III2,G+ SUP (gradh (w V), '1 -R R) 

YqEE~(G) hh 

where /u2 is a nonnegative integer and w is a cutofffunction defined as follows: 

(6.3) w( E C' (G') and w(o-=1 on Got 

with Go and G' such that Go cc GI cc G' cc G cc 

Proof. We set 

(6.4) O=co, 0=cp, (=wco 

Then 0 E [H1(G')]2, j3 E L2(G'), and & E H(rot; G'), and owing to (3.34)- 
(3.36) and Lemmas 4.3 and 4.4, they satisfy 
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(6.5) a(O, q)- (ff, rot q) = (grad (wq,) , t,) - I(wO , 

- ((rotw)p + (gradw() t, '7) Vt, E [He(G)]2, 

(6.6) 

(rot, q)+i1 t2 (rot&, q) =-(rot.(O +A-It2a), q) Vq EL2(G), 

(6.7) ( 6)- (ff, rot 6) = -((rot w)p, 6) V6 E H(rot; G). 

Let Oh E Eh(G), &h E Fh(G), Ph E Qh(G) with fGih = fGl3, be the unique 
solution of 

(6.8) a(b-Oh, q)-(f -ih ,rot 1) 

= (grad(wy/), q) - (gradPI(wy/), Rq) Vt, E 9h(G), 

(6.9) (rot(@ -6h), q) +)1t2(rot(-&-ih), q) =0 Vq E Qh(G), 

(6.10) (& -t, 6)-(f-jPh. rot6) = O V6 E Fh(G). 
0 

We recall that PI (Wv') E WJh(G) in view of Remark 4.1. On the other hand, 
we have from Problems 3.4 and 3.5 the following error equations: 

(6.11) a(O - Oh, q) - (P -Ph, rot q) 
= (grad Vr, ,) - (grad yh, Rq) Vq E eh(Q2), 

(6.12) (rot(O-Oh), q)+A-1t2(rot(a-ah), q) =0 VqE Qh(Q2), 

(6.13) (a-ah,J)-(p-Phrot6)=.O V6Er r(2). 
0 0 

We compare these two sets of error equations for all , e 0h (Gb), q E Qh(Gb), 

and 6 E Fh(Go), taking into account that, from (6.3) and (6.4), 0 = 0, p = 
and a = a in Gb. Hence, subtracting (6.1l)-(6.13) from (6.8)-(6.10), we 
arrive at 

(6.14) a(Oh -0h, t,) -(Ph -h., rot q) 

= (grad (Vlh -P1 (wy, )), Rq) Vt eh (Go), 
0 

(6.15) (rot(Oh - 6h), q) + A1t2 (rot(ah - &h-, q) = 0 Vq E Qh(Gb'), 

(6.16) 
(hh-,J 

)-(Ph-h. rotJ) =0 V6 Erh(Go) 

We split the error functions on Go as follows: 

(6.17) -Oh = 0- h + bh-Oh 

(6.18) P-Ph =PP h +hPh, 

(6.19) a-ah = ?k- h +h- ah- 

The estimate (6.2) is now a straightforward consequence of the two propositions 
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below. In fact the triangle inequality, (6.3) and Proposition 6.4 give 

111( - Oh, a - ah, P -Ph)Il1 ,GG 
< 1110 (- h, a-hJ u-Ah) l 

+ III (h -Oh, ah - ah Ph -Ph) J 1, Go 

< 1110 - 6h, -hJ P-Ah-) 1, G 

+ CHIOW - P1(f)ll1, Go + Cl1 V - V'hlI,Go 
+ CIII(O - Oh, &a-ah , -h) III -2,Go 

+ CIII(O - Oh, aC- ah, P -Ph)III-82 , Go' 

< (1 + C)II(O - Oh, & - h, P -Ph)III,G 
+ Cl(O - Oh, a -ah, P -Ph)III-j2 , Go 

+ CII||qI - PI (wY/) II 1, Go + Clkii -h 11 1, Go'- 

Then we obtain (6.2) by applying Proposition 6.3. 0 

Next, the approximation properties of the finite element spaces considered 
imply 

Corollary 6.2. Under the same hypotheses as in Theorem 6.1, we have 

IIK( - Oh, a -ah, P -Ph)111l,Go 

(6.20) < C(OW' - Ylhl,G + hk lkIlk+l ,G) + Chk III (, a, P) IIk+1, G 
+ C11K(H- Oh, a - Cih, P -Ph)11I -j2 , Go 

where 12 is a nonnegative integer. 

Proof. Applying Remark 4.1, we easily see that 

II (coO - I(wcoO), oa - R(coa) , Wp - PO (CP)) III 1, G < Chk II (O a, P) I1Ik+ 1, G 

and 

coW - P1(coqv)| 1,G < Chk|| Ylik+IG- 

On the other hand, by (3.21), we have that for every q E Esh(G) there holds 

(rot(q - Rq), q) = 0 Vq E Qh 

Integrating by parts, we get 

(q - Rq, rotq) = 0 Vq E Qh. 

This means that q - Ri, is orthogonal to the set of piecewise polynomials of de- 
gree less than or equal to k-2 . Let grad (wcys)* be the interpolant of grad (coy/) 
in the set of piecewise polynomials of degree k - 2; then 
(6.21) 

sp(grad (jy.') , '1 - Ri,) sp(grad (wjy.') - grad (woy,)* q - Ri,) 0~ 11 111, 
= 

0 11 711 (, )G 
?IE~h(G) qE~h(G) 

< ChkjI YIk,G. 

Inserting these estimates into the right-hand side of (6.2), we get (6.20). E 
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Proposition 6.3. Let 0, p, ( be given by (6.4) and let oh, Ph. ah be the 
solution of (6.8)-(6.1O). Let Al hold; then 

111(b - h, a-h,,f P- h-) III ,G 

(6.22) 
< c 111(b - rib,&( - R&x, P - POP)1111,G (6.22) ? -O -a~3P~)Il 

+ IIw(O-PVp1(wI)II + sup (grad(wV), q-Rq) 
EE*h(G) 

Proof. The proof of this proposition is quite standard and relies on the assump- 
tion Al and on the properties (3.19), (3.21), (3.22) of the finite element spaces 
(see [11] for technical details). E 

Proposition 6.4. Under the same assumptions as in Theorem 6.1, the following 
estimate holds: 

III (Oh-Oh, ah-ah, Ph-Ph ) III1, Go 

(6.23) < CIIgrad (P1 (cwi) - 'h) I0, Go 

+ CIII(Oh - Oh, ah - ah, Ph -Ph)III -U2,Go' 

where u2 is a nonnegative integer. 
The proof of this proposition will be given in ?7. 
We are now in a position to prove the interior estimates: 

Theorem 6.5. Let A1-A3 hold, and let no cc QI cc Q; then for h sufficiently 
small we have 

II(O - Oh, a -ah, P -Ph)IIIl,no 

(6.24) < Chk(II Y/IIk+lnl + 111(0, a, P)IIIk+i,n1) 
+ QIVI - 

Vhlk-yl,nl + II(O - Oh, a -ah, P -Ph)III-Y2,n1)l 

where #u1 and u2 are two nonnegative integers. 
Proof. Let Q' be such that no cc Qn cc ni cc Q. We cover no with 
a finite number of spheres Go(xi), i = 1, ..., n, centered at xi E Qo, with 
diam(Go(xi)) = I dist(Qo, aQ0'). Then, let G(xi), i = 1, ... , n, be corre- 
sponding concentric spheres with diam(G(x1)) = dist(Qo, aQ'). We apply 
Corollary 6.2 to each pair of centered spheres and we have, for i = 1, ..., n, 

111(0 - Oh, a - ah , P -Ph)III1,Go(xi) 

< C1(11iV - VhI l,G(xi) + hkIIYII k+lG(xi)) 

+ C(hk III(, a, P)IIIk+ ,G(xi) + CIII ( - Oh, a - ah, P - Ph)III -,2 G(xi)) 

< CQ(II - thI 1 l, no + hkII yIIk+l,n') 

+ C(hkIII(0, a, P)IIlk+l1,n + CIII(0 - Oh, a - ah, P -Ph)III-U2,n%)- 

Therefore, (6.1), written with Q' instead of no, gives (6.24). 0 

Remark 6.6. As we have pointed out in Remark 4.2, rectangular families of 
finite element spaces defined by (3.43)-(3.46) do not satisfy Assumption A3. 
However, we can get the same results as in Theorems 6.1 and 6.5 also in this 
case, by assuming that t < Ch in the interior of the domain Q (see Remark 
7.10 below), which is reasonable in a good number of applications. 
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6.3. Interior error estimates for the last Poisson equation. It remains to analyze 
the interior error estimates for the last Poisson equation (3.37) discretized by 
(3.32). In this case the error equation can be written as follows: 

(6.25) (grad (w-Wh), grad v) = (0 -ROh, gradv) Vv E Wh. 

Let 0o CC Q,'5 cc Q'0' cc Q1 cc Q; we apply the results of Theorem 5.2 
of [14] and get 

(6.26) IIw -WhII|1, ,o < C(hkIIwIIk+l,n' + IIW -WhII|-3,,n + 110 -RRhIIo,n'), 

where Y3 is a nonnegative integer. 
To bound the last term in (6.26), we use the triangle inequality and find easily 

that 

110 - ROh lb Do <110 - ROIIo, n + IIR(0 - 0h)10oo. 

From Al it then follows that 

110 - ROIIo,n, < Chk 110lk,ni, 

and 

IIR(0 - Oh)llo, < CH - Ohllnlj. 

Using (6.24) with Qo/ instead of no, we obtain 
(6.27) 

11W - WhII1,o < Chk(II V/IIk+lQl + IIWIlk+1,n1 + 111(0, C, P)lIIk+1,n1) 

+ C(II V- Vhlk-yl,nl + II(O - Oh, at-aCh, P -Ph) III -.2, n 

+ IIW - WhIIky-3,,1)- 

7. LOCAL INTERIOR STABILITY AND DUALITY ESTIMATES 

In this section we shall discuss the properties of oh - oh, ah - ah, Ph - 

Ph which satisfy (6.14)-(6.16). Abusing notation, we replace in (6.14)-(6.16) 
oh-oh, ah'-ah, Ph -h and Vhg-P1(wig) by Oh E Eh(Ql), ah E h(Q), 
Ph E Qh(nl), and V1h E Wh(Q i), so that we have the following system: 

0 

(7.1) a(0hq)-(Ph,rotq)=(gradVgh,Rq) VqeEh(Ql), 

(7.2) (rot Oh, q) + iV1 t2(rot ah, q) = 0 Vq EQh(Ql), 

(7.3) (ah, 6)-(Ph, rot6) = O V6 Fh(Ql). 

Then we analyze this set of equations in order to obtain interior stability 
estimates for oh, ah, and Ph in terms of a negative norm of the same functions 
on a slightly bigger domain. To do this, we shall need some interior duality 
estimates for these functions. 

Throughout this section we assume that A1-A3 hold. 
Let Go cc GI cc GI be concentric spheres all contained in Q1 and consider 

a cutoff function 

(7.4) () e C?(G1), with - 1 on G0. 
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Then we have 

hIIlGo + A t2I1ahIIoGo = II 12hI|i Go + -2I t2 11h2,G0 

= I10)hIf GI +G' tIIW ahIIOGG. 
o 

I 
0 0 

Owing to (7.4) and Remark 4.1, -I(w(h) E 9h(Gl) and R(wOah) E Fh(GI) if h 
is sufficiently small. Then the triangle inequality and (4.5), (4.6) give 

|| 2|, Go + A t2 112,lx~ <C2( 1h|12 G' 
1 

+ 2-t 112 ) 

(5+ IIFI(()h)II||12 + 1t2 tIIR(Oah)II1,G12 

We estimate the last two terms of (7.5) in the next lemmas. 
Lemma 7.1. For h sufficiently small, there exists a constant independent of h 
and t such that 

11l()@)|2 G +A-1t2 ||R((ch) 112G 

< Ch2(11O,112G, + )Ltt2I1h12,G + IIPhII2,G) 

(7.6) + C(IIOh IIG; + IlPhI -l, G + 11grad/h llo G) 

+A- 1t2 (OPh, -rot o * ah) + ?j1t2 (Ph, -rot o * R(wah)) 

+ 81 II0WPhIIl,Gi 

with e1 > 0 arbitrary. 
Proof. We apply assumption A2 and Lemma 4.3 with s = -1 and get 

a(fl(w(0), fl(w0h)) + i1t2IIR(wafh) II0Go 

= a(fl(w(h) - W(h, fl(00h)) + i I t2 (R((ah) - Wah, R(wah)) 

+ a(OwOh, fl(OwOh)) + iA71t2(W(ah, R(w)ah)) 

< Ch(11Oh ||1, G' IrIl((Oh)II1,G' + A tI Ih I1o, G IIR(0fh)I1o, G ) 

+ CIIOh 110, G' IfIf((Oh)I1 , G' + a(Oh , w(0 @h ) ) + , 71t2 (ah W (OR((wah)). 

We proceed by analyzing the last two terms. We use again A2, the equations 
(7.1), and (7.3) and obtain 

a(Oh f(OM h) ) + 71t2 ( &h, (WR(w(ah)) 

< Ch(IIOhI ||1,G IrIl((Oh)I1 1,G' + A tI Ih II0,G IIR(Cah)I10, G;) 

+ (Ph, rot fl(wfl(00h))) + (grad V'h, R(fl(co h))) 
(7.7) + ,- I 

t2(ph, rot R(wR(Wah))) 

< Ch(IIOhIl1,Gl1Ifl(wOh)I1l,G' + 
- 

tI IhII0,G GIIR(wah)I1o,G ) 

+ Cl1grad ,hI1O,GA I|f(0Oh)I1 ,G' + T1 + 2. 

We apply twice (4.14) to T1 and we get 

T, = (Ph , rot fl(0wfl(0wOh))) 

= (Ph, -rot wj* fl(wO(h)) + (9ph - Po(wJph), rot fl(wOh)) 
+ (Po (wOPh), rot fl(0wOh)) ( 7. 8) 

= (Ph , -rotc fl( c )wOh)) + (w9Ph - Po (wJPh), rot f(0wOh)) 

+ (Po(wJph), -rotwo) * Oh) + (WJPO(Wph) -PO(OwPO(09Ph)), rotOh) 

+ (Po (OwPo (09Ph)), rot Oh) - 
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To evaluate T2, we use first (4.15) and then (3.19); hence we obtain 

(79) T2 = (Ph, rot R(()R(()&h))) 
= (Ph, -rot w( * R(()&h)) + ( (Ph , rot R(a()&Xh)). 

The last term in the right-hand side can be written as follows, thanks to the 
commuting diagram property (3.19): 
(7.10) 

(0)Ph, rot R(wac)h)) = (c()Ph, rot R(w(ah) - rot(w()ah)) 

+ (t)Ph, -rot w( * ah) + (C(Ph, wo rot ah) 

= ((OPh, rot R((wah) - rot(w(ah)) + (C(Ph, -rot a() ah) 

+ ((OPh, C) rotah - Po(w( rot a&h)) 

+ (PO(wJPo(09Ph)), rot &th). 

Putting together (7.8)-(7.10) and using (7.2), (4.7), (4.9) and the Cauchy- 
Schwarz inequality yields 
(7.11) 

T1 + i-1 t2T2 < C[(IIPh I|-1, G1 IIMl(00h)II11, G' + hIlPh Ilo, G1 Il(0h) II 1, G ) 
+ (hIIPhIIo,G' + II(0PhIIO,G1)(IIOhIIO,GI + hIIOhIIl,G') 

+ hA 11t2I)ph Ilo, G1 (Il||h Ilo, G' + || rot th IIo, Gh)] 

+ A-1t2 (Ph, -rotw.*R(waOch))+i 1t2 (OPh, -roto ah). 

Now recall that (7.2) states that A-it2rotcah = -Po(rotOh) on each element; 
hence, 

(7.12) A )1t2IrotcthII0,Gh = IIPO(rotOh)IIO,Gh < II0hII1,G1- 

We insert (7.12) in (7.11), next (7.11) in (7.7), recall Kom's inequality (3.4) 
and obtain 

CI|fl(w()@h)II|2 , + A7It2IIR(wah)I11G2 

< eoI|fl(w@h )I|1, G1 + e0o1t2IIR(wah)IIo G1 

+Ch2(II@hIIl G1 + ltIahIo 1G1 +IIPhI2oG) 

+ C(IIOhI IG1 II ,G1 + lGgrad YIh l, GO) +C1IlwPhIIl, 

+? A1t2 (aOph, -rot wj * Cah) +?L 1t2 (Ph. -rot W( * R(W(Oh)), 

whence (7.6) follows by choosing e0 properly. 5 

We need to bound the last three terms in (7.6). 

Lemma 7.2. Let e2 > 0 be a real number; then 

)71t2(0)ph, -rot j * xah) + i t t(ph, -rot W * R(Wah)) 

< C2A- tIIR(Wah) Io G' + ClIgrad /hlo, G 

(7.13) C(II1hII1,GG +i tII |hIlG +) 

+Cl 112 +A-lt2||| 1 12 112hl-,G) 
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Proof. The estimate will be obtained by a duality argument. Consider $ e 

COO(G1) such that fG, q dx dy = 1; then we can write 

)'t2 (WPh, rotw * ah) = h 2t2 (WyPh ,w4) _A- It2( p a), 

A71t2(ph, rot o * R(Oah)) = 71t2(COYph, R((Oah)1) _ ?I?t2 (WxPh, R(wah )2). 

Let - be either (ox or wy3; then setting 

Y1,i = (0j, ai), gl,i = Ojai- Y1, io, 

Y2,i = R(WOah)'dx dy, g2,i = R(wah) -Y2,, , 

we have 

(- Ph. oja' A- t Wh , 91,g i) + A- It 09Ph 1 io) 

(PiPh, R(COah )i) =h 1t h, 92, i) + (O 1 t2 Y2p i 

We observe that gj,i for j, i = 1, 2 belong to L2(G1) and have zero mean 
value; hence we can consider the solution of problem (5.1)-(5.3) on the domain 
GI corresponding to the data f- = O and g = A-It2gj,i for j, i = 1, 2. 
Integration by parts then gives 

A- 1t2 06ph , gj, i) =-(63Ph , rot z) _ A - I 
t2 06Ph , rot rot r) 

+ a(iO~h, Z) - (rot(h)s , r). 

After some calculations using Lemmas 4.3 and 4.4, properties (3.19) and (3.21), 
and equations (7.1)-(7.3), we arrive at 

7-It2( iPh, gji) = a(6iz- H(?z), Oh) -I1t2(ah, R(0 rotr) - ? rotr) 
- (Kir - Po(KWr), rot Oh) 

+ (grad V'h, RH(I(?z)) - (rot z, Ph) 

_- A-t2 (rot -0 * rot r, Ph) - I (?uOh, Z) 

_ A-It2 ((roti)r, ah^) + (r, rotK; - 
h). 

Then we bound all the terms using Al, (4.13), and duality estimates; one obtains 

,i1t2(@~Ph, gji) < C[hIIOhII1,G0(IZ11I2,Gi + llrlIl,G1) + 
- 

t hII'hIIO,G'jjr112,Gj 

+ ||grad Vh IIo, G' 11Z1 1, G1 

+ 11Ph1||-1, Gj11(ZI , Gj +A 
- 

t 211r112, G1 ) 

+ Z lt2I|ahI|-l,Gj IjrIlj,G1 + IjrIIO,G, IIOhIIO,G1I 

From the a priori estimates (5.9) we have 

IIZII1,G1 + I1rI1o,G1 + 
- 

112trijrj 1,G1 + 1 t2 IrII2,G1 ? C)1t2j, i 1o, G1. 

Moreover, since A is an elliptic operator of second order with constant coeffi- 
cients, we obtain from (5.1) 

||Z|12,G1 < C11AZ110,Gj < Cj|r||l,Gj C 1tgj, i110,Gj. 

Hence, we conclude that 
AIt 2 t(OPh, g j, i) 

(7 14) ~~< C). l/2tllgJ~|oG~|@|lG +h /tllalo 

+ A-7/2tllgrad V'hIIO, G' + II0hII0, Gj 

+ 7I't2I1ahI|-1,Gj + IIPhII-1,G1)- 
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Furthermore, we have 

(7.15) A -'t'03Ph, yj,iO) < CA- t |yj,,i||iPhll-IGII1101,G,- 
It remains only to bound I jiI and Ilgj,iIIo,G1 for j, i = 1, 2. 

Since w) E CO?(G1), we have 

lyi il = 1(Ca), ah)l < Cjjah 11-1, Gj < Cllfh 11-1, G1 

and 

IY2,iI < L R((twah)'dxdy < C|jR(wtah)"jo1,G' < CIIR(Oach)IoG. 

Then 

lIg1,JiIO,G1 < CIWai llo,G1 + C1Y1,d i1bI0o,G1 < CIwaJxhIllo,G1 + C1Y1,d ikbI10o,G1 
< C(hI|cah 0o, G + IIR(wCtah)llo,G' + IIh11-1,G1), 

and 

11g2,IIIOG1 < CIIR(aCh)'IIOG' + CIY2,iIlIkkIIoG1 < CIIR(wjah)IIoG. 
Putting these estimates in (7.14) and (7.15), we obtain the desired inequality 
(7.13). o 

Lemma 7.3. The following estimate holds: 

)IIOPhIlo,G1 < CI1fl(w00h)II1,G' + Ch(IIOhII1,GI + IIPhlo,G) 
(7.16) + |h|- 1 + 1~ga / lG + CI1PhI1-,Gi + C11gradq/hIIO,Gl. 
Proof . Let W = ( 1/ meas(GI)) fG Wph dx dy; then IW I < C Iph Il G1, since 
w( E COO(GI). Then we have ICIWPhIIo,G, < I1OwPh - IIOG1 + CI1phIl-1,G1, and 
we apply the continuous inf-sup condition as follows: 

IIWPh IIO,G? < C sup (wPh-Vrotq) 

( 7 . 1 7 ) lHI ~~qE[H (G. )]2 
1 1 -7 11 1, G. (7.17) -c sup (Wph ,rot q) 

IE[H1(G1)]2 

<ChII~hI~oG~ + c sup(PO (wPh) , rot q) < Ch||Ph||O, G. + C SUp IVI1G 

qE[H1 (G1)]2 I1I1G 

From (3.21) and (4.14) we have for the numerator 

(Po(wPh), rotq) = (Po(Cph) , rotllrq) 
= (Ph, rot l(fllq)) + (Ph, rot co * 1it) 

+ (Po(wPh) - WPA, rot rit). 

Therefore, (7.1) and Lemma 4.3 yield 

(Po(wJph), rot i) = a(Oh, f1(wIqq) - wolt,) - (grad V/h, Rfl(wflt)) 

+ (Ph, rotwo* -IIr) + (Po(wph) - WPh, rot JY*) 
+ a(fl(WC )), 11t) + I(W0h, fit) + a(wJOh - (wJOh), fi,). 
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We insert this equality in (7.17) and use (4.5), (4.7), and (4.13). Then, recalling 

also that by (3.22) IIqj11 1,G < CIIq 1I1,G1 for every q E [HI(GI)]2 and that by 
0 

(3.23) IIRvIIo,G' < CiV II1,G1 for every v e 9h (Gi), we obtain (7.16). El 

We collect the results of the previous lemmas and we get: 

Proposition 7.4. Let Go cc G1 cc GI be concentric-spheres; then there exists 
a constant independent of h and t such that 

III(Oh, Cah, Ph)I|||1,Go < ChIII(Oh, aih, Ph)III|,G. + III(OhV ah, Ph) IIIO,Go) 

(7.18) +CIgradqhIlOG, 

Proof. We put together (7.6), (7.13), and (7.16) and choose el and e2 properly 
to obtain 

11Icva~i2 G +A It2IIR((0a<h)~ 112 

(7.19) < Ch2(IIv112 G' +I tt2IIahIloGi + 11P2IIoG,) 

+ C(II1hIIG1 +)G tIIfxh _IG1 + IIPhIV=-1,G, + jjgradqXhj|o) GO 

Hence, the estimates regarding Oh and ah in (7.18) are obtained; it remains 
to bound IIPhI Io, Go . Using (7.4), we have IIPh IIo, Go < I Iw(ph IIo, G1 . Then from 
Proposition 7.3 and (7.19) we get also the bound for Ph, and the proof is 
complete. El 

We introduce here some interior duality estimates which will be used later 
on to bound the second term in the right-hand side of (7.18). We give only the 
idea of the proofs and refer to [11] for the details. 

From now on we assume that G and G1 are concentric spheres with G cc 
G1 cc ni. 

Lemma 7.5. Let G and G1 be as above and let s > 0 be an integer. Then for 
p=min(s+ 1, k) we have 

(7.20) ||-h is, G -s--,GI 

+ Ch (IIOhII G. + A 1tIIahI I 01) + CIIgrad VhII I0, . 

Proof. Suppose that G cc G' cc G1 are concentric spheres and that co 1 
on G and CO e C0 (G'). Then we can write 

IhII_, <?IlvhIIs = sup (w?h . f) O 1_ G 1ChLs, GI up Ilfil0- 
fE[Hs(Gi)]2 s, GI 

We consider the solution of (5.1)-(5.3) with G = G1 and g= = 0 and we 
work as in the proof of Lemma 7.2. Then we apply Remark 4.1 to estimate 
the approximation errors and Lemma 5.3 to bound the solution of problem 
(5.1)-(5.3) in terms of IlfIIaG . 0 

Lemma 7.6. Let G, G1, s and p be as in Lemma 7.5; then 

IIPh ___ 1 < C III (Oh, ah, Ph) IllII-.1aG 
(7.21) + ChG(IlaIIl , 
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Proof. Let G, G', G1 and w( be as in the proof of the previous lemma. Then 
we have 

IIPh 1- IG"i, < II WPhI sup (Wph, f) _S_ 1,G If II 
fE Hs+ I (G) s+ 1,G 

We consider now the auxiliary problem (5.1)-(5.3) with G = G1, f= 4 = 0, 
and g = f - yq, where y = faf and q E CO?(G1) is such that fGq = 1. 
Then with the same duality argument as before, we obtain (7.21). 5 

Lemma 7.7. Let G, G1, s, and p be as in Lemma 7.5; then we have 

i 1/'tIC ah I I s-1 G < C III (Oh, h, Ph) IIl -s-1, GI 
(7.22) + ChP(IIOhII- G +2 /1tIIfhlI0Go,) 

+ Cllgrad q/h 11 G -. 

Proof. The proof is similar to the preceding ones. Let G, G', G1, and w( be 
as before. Then we have 

A-L/tIIaChIL lG ? A-1/2tIIW(0hII -s_1,'_ sup A- 1/2 t(Wah 

4E[Hs+l(G)]2 P+ I, GI 

We consider the auxiliary problem (5.5)-(5.8) with G = G1 and f = g = O and 
proceed as before, but using Lemma 5.5 instead of Lemma 5.3. 0 

We collect the results of Lemmas 7.5-7.7 in the next proposition. 

Proposition 7.8. Let G and G1 be concentric spheres with G1 cc Qi, and let 
s > 0 be an integer; then for p = min(s + 1, k), we have 
(7.23) 

(@h, h, P ) il _s < Cllgrad Vh 110 -^ III (Oh, &th ,Ph) III _S? GIgay~j0 
+ C(hP III (Oh, h , Ph) , + III (Oh, ah, Ph ) 

We are now in a position to prove the following proposition, which gives 
Proposition 6.4 when we substitute oh, ah, Ph. and 1h by oh - oh, ah - 

afh, Ph - Ph, and P1 (wig/) - q'hI respectively. 

Proposition 7.9. Let Go, Go be concentric spheres; then for h small enough and 
for yu > 0 an integer, the following estimate holds: 

(7.24) III (Oh , Cth 7 Ph) III Il, Go < C III (Oh IC AhPh ) llGo' + Cl Vh l Go - 

Proof. Let G1 cc G2 cc ... cc GA cc G' be concentric spheres; then we 
have from Proposition 7.8 with p = 1 and s = 0 

(Ih I fh h , Ph)III0,G1 < C(hIII(Oh & 0 h , Ph)III1,G2 + III(Oh &th, Ph)III-1,G2) 

+ ClIgrad gh IIO, G2. 

Iterating this argument for s = -1, ... , - p + 1, we get 

I(Ih I ( h , Ph) II0o, G C(h III (Oh & Cth , Ph) III l, GI + III (Oh h, Ph)III-, G ) 

+ CI|grad y/h I1o, GI. 
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Then we insert this inequality in (7.18) and obtain 

III(Ohh, ah, Ph)Ill1,G0 < C(hIII(Oh, ah, Ph)III1,G' + III (Oh, &h, Ph) III -,G ) 

(7.25) + CIIgrady/hIIo,G1. 

Consider now a new sequence of concentric spheres G' cc G' cc ... cc 
G+2 = Go; applying (7.25) with Go and G' replaced by Gj and Gj+1, we 
obtain 

III(Oh , h, Ph) IIIGS ? C(h III (Oh h, Ph)1111,G,;+1 + III(Oh, &h, Ph)III-a, G',+,) 

+ CIIgrad ghIjo, G1- 

Starting with Go and iterating for j = 1, ... , ,/t, we get 

III (Oh , ah , Ph) III 1, Go < C(h I}III(Oh, ah, Ph)IIIl1 ,G 1 + III(0h, &h, Ph)III-,u, G'1) 

+ Cjjgrad Yh 1jo, G+., 

Now, let Gh be a union of elements of Th such that G+ cc Gh CCG>2 
then by the inverse inequality we arrive at 

h'+' III| (O @ , th , Ph ) III 1 , 8 l + 
< III|| (O h, Cth , Ph) III 1 , G, 

< lIII (Oh , Cth, Ph ) III -,u, G, < C III (Oh,~C ah, ah) III -,, Go' - 

The last two inequalities give (7.24). 0 

Remark 7.10. The only point in this section where A3 has been used is the 
estimate of T2 in the proof of Lemma 7.1. If A3 is not true (for example, this 
happens when rectangular families (3.43)-(3.46) are considered), we assume 
alternatively that t < Ch at the interior of Q. Then we can proceed as follows 
in order to get the bound of T2: in view of (3.19) we write 

T2 = (Ph, -rot wj * R(wah)) + (PO (cwPo (wPh)), rot ah) 

+ (PO(Wph)-w0Ph, -rot o -ah) + (Wph, -rotW o ah). 

Then, since t < Ch, we obtain 

i-1t2T2 < Ch2IIphIIoG' + Ch2I t IIahIIO,G' + (Po(wPo(wph)), rotah) 

+ (Ph, -rot c) * R(wEarh)) + (w)ph, -rot a) * a h), 

and inserting this inequality in (7.7) instead of (7.11), we arrive at (7.6). 

8. INTERIOR ASYMPTOTIC RATES OF CONVERGENCE 

In this section we shall apply the abstract results of ?6 to the families of finite 
element spaces introduced in ?4 and state the asymptotic interior estimates. To 
this end, we need to evaluate the rate of convergence of the negative norms of 
the errors which appear in the second members of (6.1), (6.24), and (6.26). As 
in ?6, we proceed by analyzing separately the two Poisson equations and the 
Stokes-like system. 

It is easy to obtain from (6.1), by means of a duality argument with PIt = k- I 
and s = k + 1, the following bound: 

(8.1) IV- 'hIII,n0 < Chk(jIjllk+jQl + II'IIIQ)- 
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More delicate is the estimate of 11(0 - Oh, a - ah , P -Ph) III n-# , because of 
the presence of the boundary layer in the solution of the system (3.34)-(3.36). 
We carry out the proof of the estimate of such a quantity by duality arguments. 

First we prove the following lemma, which will be useful in the remaining 
part of the section. 

Lemma 8.1. Consider the solution (z, r, X) of (5.5)-(5.8); then for s + a < k 
there holds 

(0- Oh, ) +A-1 t2(a - ah, 4) + (P -Ph, g) 

(8.2) < Chs+a(II0IIs+j + IIPIIS + -1j2tIIpIIS+i + -112tIlaIIs + 11 )II'I+1) 
x (IIZIIr+i + IIrIIa + A-112tIIrIIa+ + 7-112tII.XIIr). 

Proof. We multiply (5.5) by 0 - oh, (5.6) by P -Ph. (5.7) by ax - Ahx, and add 
the three equations. Then we use (6.1 1)-(6.13), integration by parts, (3.19) and 
obtain 

(0- Oh, ) + A-7 t2(C - ah, 4) + (p-Ph, g) 
= a(0 - oh, z - Hz) - (rot(0 - Oh), r - Por) - (P - Ph, rot(z - Hz)) 

- -t(rot(X - Rx), p - Pp) + A-lt2(X - RX, (x - Ash) 

A-1t2(rot (r - Por), a - ah) + (grad V, fz - Rlz) 
- (grad(V/ - V'h), Rflz). 

Applying the approximation properties of the finite element spaces and the error 
estimates (3.52), we get 

( -Oh, f +i -7t2(a-ah, 4) + (P-Ph, g) 

< Chs(0'(IIoIIs+l + IIpIIS + A-1/2tIIpIIS+1 + i7112tIIafIIS) 
x (IIZIIr+i + IIrIIa + A-112tIIrIIa+ + A-112tIIXII0r) 
+ (grad V, flz-Rflz)-(grad (V - 0th), Rrz)- 

The last term can be bounded using the standard estimates for the approxi- 
mation of the Poisson equation by conforming elements as follows: 

(8.3) (grad (V - 'h), RfIz) < Chs+` I VIIs+a+l IIzi I I 

while for the next to the last term we can use the same argument already em- 
ployed in the proof of Corollary 6.2 (see (6.21)): let (grad V)* be the interpolant 
of grad V in $-s; then 

(8.4) (grad V, FIz-Rflz) < Chs+alI lIsIlzII,+j. 

Then (8.2) is obtained. 5 

Now recalling the definitions of the norms (2.1) and (2.2) and the a priori 
estimates for the dual problem (5.5)-(5.8), see Lemmas 5.1, 5.2, and 5.4, it is 
easy to obtain the following asymptotic rates of convergence. 

Theorem 8.2. Let k = 2 or 3 in (3.38)-(3.41) and (3.43)-(3.46); then for F 
sufficiently smooth, 
(8.5) 

?11( -Oh, Cth-askh, P -Ph)IIIk,+o 

< Chk(110 I|k+1,nj + IIP||k nj +i A112t|lp Ilk+l n + 1101{|k+l nl + C(F)). 



564 LUCIA GASTALDI 

Proof. It remains to evaluate III(O - Oh, a - ah, P-Ph) III-, (see Corollary 6.2 
and Remark 6.6). Let us fix k = 2. We choose u2 = 0 and estimate separately 
the three terms entering the norm by means of a duality argument. We have 

10 -OhI1o= SUp ( -h, f) 

fe[L2(j)]2 IlfIlo 

Therefore, we consider the solution of (5.5)-(5.8) corresponding to g = 4 = 0 
and f E [L2(Q)]2 and apply Lemma 8.1 with s = a = 1. By the global error 
estimate (3.1 1) and the a priori estimate (5.10) it follows that 

(8.6) 110 - Oh lb < Ch2lIFlIo. 

Analogously, if we consider (5.5)-(5.8) with f = 4 = 0 and g E Ho(Q) and 
apply Lemma 8.1, (3.1 1), and (5.10), we get 

(8.7) IIP-PhII-1 = SUP (P Ph, g) < Ch2IIFIIo. 
gEHO'(fl) HAgjI 

The next term we must bound is 

A-'tI1a -aI-1 
I 

)Al/-1up, 2 (a - ah,4' 
ahII-1~~~~~~~~~~~~I 4)IlUPo i- 1 2 t fE [L2(Qj)]2 || 011 o 

Hence, in (5.5)-(5.8) we take f = g = 0 and q5 E [Ho'(n)]2 and apply Lemma 
8.1, (3.1 1), and Lemma 5.4 to arrive at 

(8.8) )-1/2tIja - ahIIl- < Ch2jjFjo. 

The estimates (8.6)-(8.8) inserted in Corollary 6.2 imply (8.5). 
For k = 3 the proof is similar. The only differences consist in choosing 

/12 = 2, s = cr = 1 in Lemma 8.1 and in applying (3.12) instead of (3.11), 
(5.1 1), and (5.14) instead of (5.10) and (5.13), so that 

(8.9) 1( -Oh, a - ah, P -Ph) III-2 < C(F)h3 

with C(F) depending on the H'-norm of F. E 

Finally, we have the following asymptotic error estimate for the displacement: 

(8.10) 
IW -WhIll,Qo < Chk(IIllIk+l,nl + IIWIlk+1j2i + jjj(0, a, P)IIIk+i,Q, + C(F)), 

for k = 2, 3. 
This bound can be obtained from (6.27) and (8.1), (8.6)-(8.9), using again a 

duality argument to estimate IIw - II -,u 0. More precisely, we have 

(8.11) IIW-WhII-|3= sup (W-Whf) 

Let u be the solution of the Dirichlet problem -Au = f in L2 and u = 0 on 
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OQ; then the numerator in (8.11) becomes (see (6.25) and (6.21)) 

(w -Wh, f) = (grad (w- Wh), grad (u-PIu)) 
+ (O-ROh, grad (PI u-u)) + (O -ROh, grad u) 

= (grad (w - Wh), grad (u - PI u)) + (0 - RO, grad (PI u - U)) 

+ (R(O- Oh), grad(PIu - u)) + (0- Oh, gradu) 
+ (Oh-0- R(Oh - 0), grad u - (gradu)*) 
+ (0 - RO, gradu - (gradu)*), 

where (grad u)* is the interpolant of grad u in S-2. Then, using appropri- 
ately the approximation properties of the finite element spaces together with 
(8.1), (8.6)-(8.9), the inequality (8.10) follows for suitable choices of [13 in the 
two cases k = 2 and k = 3. 

This method of proof cannot be extended to obtain the estimates (8.5) and 
(8.10) for all the values of k greater than 3. In fact, in order to use the duality 
argument as before, we should have an a priori estimate for the solution (z, r) 
of problem (5.1)-(5.3), with g = = 0 and f E [H /2]2, of the form jjzjj,+I < 
C11fIIz2 with a > 3/2. We show that this is impossible. 

Since rot(z + A-l t2rot r) = 0, we have for some element il of HI that 

A-112t2rot r = grad i - z. 

Substituting this in (5.1), we obtain the following equivalent formulation: 

(8.12) Az = At-2(grad i - z) + f in Q 

(8.13) div(grad i - z) = 0 in Q. 
(8.14) z=0, ii=0, onOQ. 

Following Arnold and Falk [2], we obtain that z and il can be well approxi- 
mated by the following expansions: 

'1 = C1o + A-It2 2 + A-3/2t313 + 

z = zo +)A-t2z2 +A-3/2t3Z3 +... +x(A-312t3rotQ3(p/) 112t, r) +* _), 

where p and r denote the boundary-fitted coordinates and X is a cutoff func- 
tion (see [2]). The interior terms in the expansions can be constructed as follows, 
setting C = E/12(1 - v2). 

-={ divf, i-0, 

f grad'1i, i=0, 1, 

Zi= grad('12+CA'1o)+f, i=2, 
1 grad (as + CA'1-2) + , i > 2, 

while for the boundary terms we have (set P = p/A- 1/2t) 

02Q. 

- 0,52 Q= 

where in the right-hand side appear the preceding terms of the expansion. To 
these equations suitable boundary conditions have to be added according to 



566 LUCIA GASTALDI 

(8.14). These boundary conditions are such that the boundary terms Qj have an 
exponential decay as p tends to infinity, that is, Qj = qi(r)e-P/PA'/t . Recalling 
that Ile-P/A"2t / CtI12, we see that lIzII,+i is bounded uniformly for a > 
3/2 only if Q3 = 0. But Q3 solves 

- +Q3=O, P>o, 
Op2 
9 

= aAi0, p5=0; 

hence, we must find out for which f E [H /2(Q)]2 it is true that the solution of 

(CA o = -divf, inK, 
? lo =? 0on OQ, 
'9 

et = O. on OQ, 

satisfies the additional condition 19 Ai0 = 0. 
This is equivalent to describing the set whose elements are A2v, when v 

belongs to 

V= vEH3(Q):v=O, O. 0y 
a 

Av = O on OQJ, 

which can be characterized as 

V = H3(Q) @ span(p2X). 

Now we observe that if v E Ho(Q), then A2v is orthogonal to all functions q 
such that A20 = 0 in Q and q = 0 and OQ. Therefore, the set {A2vlv E V} 
is not dense in any H-1-space. This proves that for arbitrary f vanishing on 
aQ, Q3 is different from zero, so that llzlla+i = O(t-6+312). 
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